BIO-SHELTERS. DESIGNING REEF HABITATS AT THE SYDNEY HARBOUR | UNSW | 2016

by yannis zavoleas

Partners: University of New South Wales CoDe Society, University of New South Wales Biomedical Engineering, The University of Newcastle School of Architecture, Reef Design Lab, World Harbour Project, Macquarie University Biological Sciences

Concept: Yannis Zavoleas, Hank Haeusler, Andre Pereira, Beth Strain, Rebekah Araulo

Design: Yannis Zavoleas

Other contributors: Eliot Rosenberg, David Lennon, Alex Goad, Melanie Bishop, Vivian Cumbo, Maria Vozzo, James Gardiner

Description

Is it possible to design shelters where clams and other seashell organisms may feel more “at home,” as they will be protected, breed and thrive?

Sydney harbour has remarkable biodiversity, being one of the world’s healthiest ecosystems. Many of the species that live underwater are filter feeders, whose primary contribution in sustaining environmental balance is to clean the water by removing excess nutrients and pollutants. Due to increasing human population, pollution and climate change, the ocean is becoming a stressful environment for seashell organisms who live on rocky reef habitats. If those systems are continuously subjected to numerous stresses especially those related to human action, the strain is too much to endure and so they will perish.

The purpose of this workshop is first to study the conditions allowing reefs as marine ecosystems to survive; then, to design alternative shelters for the related species that will provide enough protection for them in order to breed and to thrive. Various digital and analogue tools used for dynamic simulation are employed to test reef structures as multi-agent systems with dynamic characteristics. Those systems are extremely versatile, agile and vital in maintaining environmental balance, meanwhile being very fragile, sensitive and threatened under the existing conditions. Key parameters influencing the viability of clam colonies are examined, leading to design propositions and prototypes about shelter units making compound reef structures. This study aims to reinforce the idea that applying dynamic simulation techniques is suitable for a wide range of design scenarios including our human settlements and the broader environment we live in.

bio-shelters-poster-compr

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: